Completion of High Order Tensor Data with Missing Entries via Tensor-Train Decomposition
نویسندگان
چکیده
In this paper, we aim at the completion problem of high order tensor data with missing entries. The existing tensor factorization and completion methods suffer from the curse of dimensionality when the order of tensor N >> 3. To overcome this problem, we propose an efficient algorithm called TT-WOPT (Tensor-train Weighted OPTimization) to find the latent core tensors of tensor data and recover the missing entries. Tensor-train decomposition, which has the powerful representation ability with linear scalability to tensor order, is employed in our algorithm. The experimental results on synthetic data and natural image completion demonstrate that our method significantly outperforms the other related methods. Especially when the missing rate of data is very high, e.g., 85% to 99%, our algorithm can achieve much better performance than other state-of-the-art algorithms.
منابع مشابه
Efficient tensor completion: Low-rank tensor train
This paper proposes a novel formulation of the tensor completion problem to impute missing entries of data represented by tensors. The formulation is introduced in terms of tensor train (TT) rank which can effectively capture global information of tensors thanks to its construction by a wellbalanced matricization scheme. Two algorithms are proposed to solve the corresponding tensor completion p...
متن کاملLow rank tensor recovery via iterative hard thresholding
We study extensions of compressive sensing and low rank matrix recovery (matrix completion) to the recovery of low rank tensors of higher order from a small number of linear measurements. While the theoretical understanding of low rank matrix recovery is already well-developed, only few contributions on the low rank tensor recovery problem are available so far. In this paper, we introduce versi...
متن کاملHigh-order Tensor Completion for Data Recovery via Sparse Tensor-train Optimization
In this paper, we aim at the problem of tensor data completion. Tensor-train decomposition is adopted because of its powerful representation ability and linear scalability to tensor order. We propose an algorithm named Sparse Tensortrain Optimization (STTO) which considers incomplete data as sparse tensor and uses first-order optimization method to find the factors of tensor-train decomposition...
متن کاملNovel Factorization Strategies for Higher Order Tensors: Implications for Compression and Recovery of Multi-linear Data
In this paper we propose novel methods for compression and recovery of multilinear data under limited sampling. We exploit the recently proposed tensorSingular Value Decomposition (t-SVD)[1], which is a group theoretic framework for tensor decomposition. In contrast to popular existing tensor decomposition techniques such as higher-order SVD (HOSVD), t-SVD has optimality properties similar to t...
متن کاملHybrid Singular Value Thresholding for Tensor Completion
In this paper, we study the low-rank tensor completion problem, where a high-order tensor with missing entries is given and the goal is to complete the tensor. We propose to minimize a new convex objective function, based on log sum of exponentials of nuclear norms, that promotes the low-rankness of unfolding matrices of the completed tensor. We show for the first time that the proximal operato...
متن کامل